US009195581B2

a2 United States Patent 10) Patent No.: US 9,195,581 B2
Barbou-Des-Places et al. 45) Date of Patent: Nov. 24, 2015
(54) TECHNIQUES FOR MOVING DATA g,g‘s‘g,igg g}: }?gggg gopardiklar etal. ... ;; é; é?g
K K ose et al.
BETWEEN MEMORY TYPES 6,934,755 B1* 8/2005 Saulpaughetal. ... 709/226
. 6,957,237 B1* 10/2005 Traversat et al.
(75) Inventors: Francois Barbou-Des-Places, 2003/0061457 AL* 3/2003 Geiger et al. 711/165
Burlingame, CA (US); Neil G. Crane, 2005/0086442 Al* 4/2005 McBrearty et al. 711/159
o e, o ot . Desal 20060028047 AL* 22006 Hllot et al 369/53.41
H . 1ottetal.
iang ranJCISCO’CCAAI(JgS)’ Joseph Sokol, 2008/0320203 Al 12/2008 Fitzgerald
r., San Jose, CA (US) 2010/0332693 Al* 12/2010 Ben-Yehudaetal. 710122
. . 2011/0022799 Al 1/2011 Sugahara
(73) Assignee: Apple Inc., Cupertino, CA (US) 2011/0082965 A1* 4/2011 Kokaetal.cccco........ 711/103
2011/0145447 Al* 6/2011 Dimondccccoevnvenene. 710/23
(*) Notice: Subject to any disclaimer, the term of this 2011/0173395 Al* 7/2011 Bhattacharjec etal. 711/135
patent is extended or adjusted under 35
U.S.C. 154(b) by 319 days. FOREIGN PATENT DOCUMENTS
R Jp 2003076606 3/2003
(21) Appl. No.: 13/175,303 P 2007013481 1/2007
Jp 2008217208 9/2008
(22) Filed: Jul. 1, 2011 (Continued)
ontinue
(65) Prior Publication Data OTHER PUBLICATIONS
US 2013/0007345 Al Jan. 3, 2013 A Dwarf. “Any reason not to disable Windows kernel paging?” Sep.
51y Int. Cl 2009. http://superuser.com/questions/41439/any-reason-not-to-dis-
(1) Int.Cl able-windows-kernel-paging.*
GOG6F 9/46 (2006.01) .
GOGF 12/02 (2006.01) (Continued)
GO6F 12/08 (2006.01)
GO6F 12/12 (2006.01) Primary Examiner — Nathan Sadler
(52) US.CL (74) Attorney, Agent, or Firm — Downey Brand LLP
CPC GO6F 12/0246 (2013.01); GOGF 9/461
(2013.01); GO6F 12/08 (2013.01); Go6F (57) ABSTRACT
127126 (2013.01) A two-level paging mechanism. The first level gathers data
(58) Field of Classification Search from reclaimable memory locations for a process and com-
None o) pacts the data into a single container. The second level sends
See application file for complete search history. the compact container’s contents to a swap file and may use
. optimal /O operations to the target memory device. On-
(56) References Cited demand paging is made possible by having a first pager locate

U.S. PATENT DOCUMENTS

5,251,303 A * 10/1993 Foggetal.cccoeni. 710/24
5,497,476 A * 3/1996 Oldfieldetal. 711112
6,038,571 A * 3/2000 Numajiri et al.

the requested data in the compact container and then having a
second pager retrieve the corresponding data from the swap
file.

27 Claims, 5 Drawing Sheets

COMPACT CONTAINER

/ 130

12—~

14

16

ADDRESS
SPACE
110

160
-/

NV MEMORY
150

US 9,195,581 B2
Page 2

(56) References Cited

FOREIGN PATENT DOCUMENTS

JP 2009503627 1/2009
JP 2011028537 2/2011
OTHER PUBLICATIONS

Bernard S. Greenberg and Steven Webber. “The Multics Multilevel
Paging Hierarchy.” 1975. IEEE Intercon.*

Michael Ismert. “Making Commodity PCs Fit for Signal Process-
ing”” Jun. 1998. USENIX. No. 98 *

Jason Parker. “Symbian OS Internals/02. Hardware for Symbian
0S8 Jan. 201 1. http://www.developer.nokia.com/Community/ Wiki/

index.php?title=Symbian_ OS_ Internals/02._ Hardware for _
Symbian_ OS&oldid=83584.*

Phillip Krueger and Rohit Chawla. “The Stealth Distributed
Scheduler” May 1991. IEEE. ICDCS 1991. pp. 336-343.*

Walling. “ATA/ATAPI using DMA.” Feb. 2009. http://wiki.osdev.
org/index.php?title=ATA/ATAPI_using_ DMA&oldid=7174.*
Bovet et al. Understanding the Linux Kernel. Dec. 2002. O’Reilly.
27 ed. Section 13.4.*

Joo et al. “Demand Paging for OneNAND™ Flash eXecute-In-
Place.” Oct. 2006. ACM. CODES+ISSS *06. pp. 229-234.*

PCT Search Report; Application No. PCT/US2012/044351, dated
Oct. 24,2012.

PCT Written Opinion; Application No. PCT/US2012/044351, dated
Oct. 24,2012.

* cited by examiner

US 9,195,581 B2

Sheet 1 of 5

Nov. 24, 2015

U.S. Patent

091

l "Old

0G1
AHOW3W AN

\

0Ll
30vdS
S§S3yaav

\

T~ 9L

IR

T Vil

T~ ¢l

Y
oe ./

H3ANIVINOD LOVdNOD

U.S. Patent

Nov. 24, 2015 Sheet 2 of 5

BEGIN

210
FREEZE ADDRESS SPACE OF —~
APPLICATION
l 220
—~_"
WALK ADDRESS SPACE
L 230
COPY LINK FOR ADDRESS —~—
SPACE TO COMPACT CONTAINER
A4 240
MOVE PAGES TONON-VOLATILE [~
MEMORY
\ 4
250
RECLAIM LOCATIONS IN gy
ADDRESS SPACE
\ 4
END

FIG. 2

US 9,195,581 B2

U.S. Patent

Nov. 24, 2015 Sheet 3 of 5

' BEGIN '

A\ 4

310
REQUEST FOR EVICTED —~
DATA
< 320
FOLLOW LINK TO COMPACT —~
CONTAINER
l 330
LOCATE REQUESTED PAGE IN —~—
NON-VOLATILE MEMORY
l 340
MOVE PAGE FROM NON-VOLATILE [
MEMORY TO RAM
350
RECLAIM MEMORY .y
LOCATION
END

FIG. 3

US 9,195,581 B2

U.S. Patent

CONTROL
LOGIC
410

Nov. 24, 2015

APPLICATION(S)
412

MEMORY
414

Sheet 4 of 5 US 9,195,581 B2

DATA TRANSFER AGENT
400

)

INTERFACE(S)
416

PROCESS
MEMORY
MODULE
430
MEMORY
TRANSFER
MODULE
COMPACT 460
CONTAINER
MANAGER
440
LINK
MANAGER
450
DATA TRANSFER ENGINE
420

FIG. 4

U.S. Patent Nov. 24, 2015 Sheet 5 of 5 US 9,195,581 B2

: . 552
Operating System Instructions 5 554 500
Communication Instructions s 556 ‘5
GUI Instructions] 558
Sensor Processing Instructions 5g 560
Phone Instructions 5 562
Electronic Messaging Instructions sy 564 f516
Web Browsing Instructions L e > Other Sensor(s)
Media Processing Instructions ? 568
— . 510
GPS/NawgannlInstructlons ' 570 O WotonSensr | L
Camera Instructions 579
Other Software Instructions g 574 512
Activation Recora/IMEI s > Light Sensor ot
550 514
| MG"JOW 5g » Proximity Sensor o)
E- ------ A V-----------------“----“---V“V -V-\“"i Camera f520
Nonl- L Memory A < > Sbsystem [
Volatile | 1 | Interface 506 ; =
Memory | ~ 4 Peripherals ; Wireless 522
— 1502 ¢ ™ terface [«—=—»| Communication | - 524
575 | \ : Subsystem(s)
i i 528
! f504 .
1| Processor(s) : .
; <> Audio Subsystem
' y i 530
L 1 fJ | C s
526
A
542 1/0 Subsystem 544
o ~— | 540
Touch-Screen Controller Other Input Controller(s)
y A
N A\ 4
Qther Input/Control
546 /] Touch Screen Devices | 548

FIG. 5

US 9,195,581 B2

1

TECHNIQUES FOR MOVING DATA
BETWEEN MEMORY TYPES

TECHNICAL FIELD

Embodiments of the invention relate to transfer of data
between memory types. More particularly, embodiments of
the invention relate to techniques for moving data from a
volatile memory to a non-volatile memory.

BACKGROUND

Electronic devices include a finite amount of memory.
Volatile memory types are typically faster than non-volatile
memory. Thus, volatile memory is typically used for applica-
tions that require minimal memory latency. However,
because the volatile memory is finite, there may be conditions
that require removing data from the volatile memory to allow
other applications or processes to utilize additional memory
locations.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated by way of example, and not by
way of limitation, in the figures of the accompanying draw-
ings in which like reference numerals refer to similar ele-
ments.

FIG. 1 is a conceptual diagram of data movement between
a first memory and a second memory.

FIG. 2 is a flow diagram of one embodiment of a technique
for data movement between a first memory and a second
memory.

FIG. 3 is a flow diagram of one embodiment of a technique
for transferring data from a first memory to a second memory.

FIG. 4 is a block diagram of one embodiment of an agent
for managing data movement between a first memory and a
second memory.

FIG. 5is a block diagram of an example implementation of
a mobile device.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth. However, embodiments of the invention may be
practiced without these specific details. In other instances,
well-known circuits, structures and techniques have not been
shown in detail in order not to obscure the understanding of
this description.

On adevice with a limited amount of volatile memory (e.g.,
random access memory, RAM), it may be desirable or even
necessary to allocate memory locations used for one process
or application to another process or application. For example,
amore important application may require more memory loca-
tions at the expense of a less important application.

In one embodiment, when the non-volatile memory is a
solid-state memory device, it may be desirable to minimize
the wear on the device and avoid read/modify/write situa-
tions. In one embodiment, the process or application is
allowed access to the data after it has been evicted from the
volatile memory and has been moved to the non-volatile
memory.

In one embodiment, a two-level paging mechanism is used.
The first level gathers pages from reclaimable memory loca-
tions for a process and compacts the pages into a single
container. The second level sends the compact container’s
contents to a swap file and may use optimal /O operations to
the target memory device. On-demand paging is made pos-

10

20

25

40

45

55

2

sible by having a first pager locate the requested pages in the
compact container and then having a second pager retrieve the
corresponding pages from the swap file.

This two-level paging mechanism may be useful, for
example, in mobile devices that typically have less RAM than
physically larger devices, such as desktop computers or even
laptop computers. For example, a tablet device, or a notebook
computer, or a smartphone may contain a limited amount of
RAM and a solid state memory device (e.g., flash memory).

FIG. 1 is a conceptual diagram of data movement between
a first memory and a second memory. The techniques
described herein may be generally applicable, but the
examples are provided generally for movement of pages
between a main memory (e.g., DRAM) and a larger storage
devices (e.g., flash memory).

Address space 110 represents the memory that can be used
by a given process or application. Address space 110 can
contain several memory regions. A memory region can con-
tain several virtual pages. A virtual page can be in one of three
states at any time: Unallocated, Resident, or Paged Out.

The primary (RAM, volatile) and secondary (SSD, non-
volatile) memories are used by multiple applications during
execution of the applications by a host system. Typically,
primary memory is a random access memory that is acces-
sible by a processor(s) executing the applications. Address
space 110 may use all of, or part of, arandom access memory
within the host system. Other address spaces are used to
support the other processes in the system and they all compete
for the limited resources of the primary memory (RAM).

The random access memory is used to support multiple
processes and each process may have its own address space to
utilize. Address space 110 has one or more memory regions
(e.g., 112, 114, 116) that are used by the process to store one
or more pages of data.

Inthe example of FIG. 1, memory regions 112,114 and 116
may be assigned to a process. In one embodiment, each pro-
cess has an associated priority that may be used, for example,
to resolve resource conflicts. For example, when a process
needs additional memory locations and insufficient memory
is available, a process with a lower priority may have some or
all of its pages evicted so that the memory regions may be
reallocated to the higher priority process.

Thus, during operation, memory regions 112, 114 and 116
may be designated for eviction. The eviction process moves
the pages from memory regions 112, 114 and 116 to non-
volatile memory 150. In one embodiment, this process
includes utilization of compact container 130. Compact con-
tainer 130 may be a region or structure in system RAM
outside of address space 110, or compact container 130 may
be in a different memory device coupled with system RAM.
In one embodiment, compact container 130 is within an oper-
ating system kernel address space.

In one embodiment, the pages from memory regions 112,
114 and 116 are stored in a more compact manner (e.g.,
contiguously, in a minimal number of pages, etc.) within
compact container 130. In another embodiment, pointers to
the pages may be stored in compact container 130. In one
embodiment, the contents of memory regions 112, 114 and
116 are copied to non-volatile memory 150. In one embodi-
ment, the pages are copied to non-volatile memory 150 in a
single write operation, or in a single write operation per page.

When pages that have been moved to non-volatile memory
150 are required, the location of the data in non-volatile
memory 150 may be determined through compact container
130. The pages may then be transterred back from non-vola-

US 9,195,581 B2

3

tile memory 150 to address space 110. The same memory
regions may be used, or different memory regions may be
used.

FIG. 2 is a flow diagram of one embodiment of a technique
for data movement between a first memory and a second
memory. The technique of FIG. 2 may be utilized, for
example, to transfer pages between memory types as illus-
trated in FIG. 1.

When pages for a process are designated for eviction, the
address space corresponding to the process is frozen (e.g.,
112,114,116 of FIG. 1), at step 210. When the address space
is frozen the process is prevented from writing to the memory
locations and changing the contents of the memory locations.
Thus, the contents of the memory to be transferred will be
coherent with the process.

The address space for the process is walked, at step 220.
When walking the address space for the process, information
is collected about the pages of memory that are frozen and to
be transferred out of RAM. In one embodiment, for pages that
are to be transferred out of RAM, pointers for the resident
pages are moved to the compact container, at step 230. In
another embodiment, the contents of the memory locations
may be copied to the compact container to be transferred out
of RAM. In one embodiment, pages that share data between
multiple processes are not candidates for eviction.

The pages are then copied from RAM to the non-volatile
memory (e.g., flash memory), at step 240. In one embodi-
ment, the pages are written to the non-volatile memory in a
single I/O operation, which may help reduce wear on the
non-volatile memory. In alternate embodiments, multiple
write operations may be performed.

The address space locations for which the pages have been
moved are reclaimed, at step 250. The reclaimed memory
locations can then be used by other processes. The process of
FIG. 2 can be repeated for other processes as well.

FIG. 3 is a flow diagram of one embodiment of a technique
for transferring data from a non-volatile memory to a RAM.
The process of FIG. 3 may be used, for example, to retrieve
pages from a flash memory when a process has been previ-
ously frozen and/or data has been evicted, for example, as
described above with respect to FIG. 2.

A request is received for the evicted pages, at step 310. The
request may be the result of a reactivation, or thawing, of a
previously frozen process. The request may be for a portion of
the previously evicted pages for the process, or the request
may be for all of the previously evicted pages for the process.

The link for the memory locations in the address space
(e.g., in RAM) to the compact container are followed, at step
320. The link and/or other information may be utilized to
determine the location and/or status of the data in the compact
container. The page location is determined, at step 330.

The pages are then copied from the non-volatile memory to
RAM, at step 340. In one embodiment, the pages are retrieved
by a single read to the non-volatile memory. The non-volatile
memory locations can then be used for other data, at step 350.

FIG. 4 is a block diagram of one embodiment of an agent
for managing data movement between a first memory and a
second memory. Data transfer agent 400 includes control
logic 410, which implements logical functional control to
direct operation of data transfer agent 400, and/or hardware
associated with directing operation of data transter agent 400.
Logic may be hardware logic circuits and/or software rou-
tines. In one embodiment, data transfer agent 400 includes
one or more applications 412, which represent code sequence
and/or programs that provide instructions to control logic
410.

20

30

40

45

4

Data transfer agent 400 includes memory 414, which rep-
resents a memory device and/or access to a memory resource
for storing data and/or instructions. Memory 414 may include
memory local to data transfer agent 400, as well as, or alter-
natively, including memory of the host system on which data
transfer agent 400 resides. Data transfer agent 400 also
includes one or more interfaces 416, which represent access
interfaces to/from (e.g., an input/output interface, application
programming interface) data transfer agent 400 with regard to
entities (electronic or human) external to data transfer agent
400.

Data transfer agent 400 also includes data transfer engine
420, which represents one or more functions that enable data
transfer agent 400 to provide the zooming in and/or out on
pages as described herein. Example modules that may be
included in data transfer engine 420 include process memory
module 430, compact container manager 440, link manager
450 and memory transfer module 460. As used herein, a
module refers to routine, a subsystem, etc., whether imple-
mented in hardware, software, firmware or some combination
thereof.

Process memory module 430 operates to determine the
status for each process and may also manage other param-
eters, for example, priorities associated with the processes or
allowable memory consumption, etc. Process memory mod-
ule 430 may control the status of the processes as well. Pro-
cess memory module 430 may operate to freeze the processes
when a higher priority process requires additional memory.

Compact container manager 440 operates to control the
operation and functionality of the compact container as
described herein. Compact container manager 440 may man-
age data structures within the compact container as well as
links the operation and organization of the compact container
to provide the functionality described herein.

Link manager 450 operates to follow and maintain links
between data structures and memory locations, for example,
between the compact container and the non-volatile memory.
Link manager 450 may operate to locate data in non-volatile
memory in response to a request for the data to be transferred
back to RAM.

Memory transfer module 460 operates to control reads and
writes to and from the non-volatile memory. In one embodi-
ment, memory transfer module 460 causes data to be written
to the non-volatile memory in a minimum number of write
operations. Similarly, memory transfer module 460 causes
data to be read from the non-volatile memory in a minimum
number of reads. This may reduce wear on the non-volatile
memory.

FIG. 5 is a block diagram 500 of an example implementa-
tion of a mobile device. The mobile device can include
memory interface 502, one or more data processors, image
processors and/or central processing units 504, and peripher-
als interface 506. Memory interface 502, one or more proces-
sors 504 and/or peripherals interface 506 can be separate
components or can be integrated in one or more integrated
circuits. The various components in the mobile device can be
coupled by one or more communication buses or signal lines.

Sensors, devices, and subsystems can be coupled to periph-
erals interface 506 to facilitate multiple functionalities. For
example, motion sensor 510, light sensor 512, and proximity
sensor 514 can be coupled to peripherals interface 506 to
facilitate the orientation, lighting, and proximity functions.
Other sensors 516 can also be connected to peripherals inter-
face 506, such as a positioning system (e.g., GPS receiver), a
temperature sensor, a biometric sensor, or other sensing
device, to facilitate related functionalities.

US 9,195,581 B2

5

Camera subsystem 520 and optical sensor 522 (e.g., a
charged coupled device (CCD) or a complementary metal-
oxide semiconductor (CMOS) optical sensor) can be utilized
to facilitate camera functions, such as recording photographs
and video clips.

Communication functions can be facilitated through one or
more wireless communication subsystems 524, which can
include radio frequency receivers and transmitters and/or
optical (e.g., infrared) receivers and transmitters. The specific
design and implementation of communication subsystem 524
can depend on the communication network(s) over which the
mobile device is intended to operate. For example, a mobile
device can include communication subsystems 524 designed
to operate over a GSM network, a GPRS network, an EDGE
network, a Wi-Fi or WiMax network, and a Bluetooth™
network. In particular, wireless communication subsystems
524 may include hosting protocols such that the mobile
device may be configured as a base station for other wireless
devices.

Audio subsystem 526 can be coupled to speaker 528 and
microphone 530 to facilitate voice-enabled functions, such as
voice recognition, voice replication, digital recording, and
telephony functions.

1/O subsystem 540 can include touch screen controller 542
and/or other input controller(s) 544. Touch-screen controller
542 can be coupled to touch screen 546. Touch screen 546 and
touch screen controller 542 can, for example, detect contact
and movement or break thereof using any of a plurality of
touch sensitivity technologies, including but not limited to
capacitive, resistive, infrared, and surface acoustic wave tech-
nologies, as well as other proximity sensor arrays or other
elements for determining one or more points of contact with
touch screen 546.

Other input controller(s) 544 can be coupled to other input/
control devices 548, such as one or more buttons, rocker
switches, thumb-wheel, infrared port, USB port, and/or a
pointer device such as a stylus. The one or more buttons (not
shown) can include an up/down button for volume control of
speaker 528 and/or microphone 530.

In one implementation, a pressing of the button for a first
duration may disengage a lock of touch screen 546, and a
pressing of the button for a second duration that is longer than
the first duration may turn power to the mobile device on or
off. The user may be able to customize a functionality of one
or more of the buttons. Touch screen 546 can, for example,
also be used to implement virtual or soft buttons and/or a
keyboard.

In some implementations, the mobile device can present
recorded audio and/or video files, such as MP3, AAC, and
MPEG files. In some implementations, the mobile device can
include the functionality of an MP3 player, such as an iPod™.
The mobile device may, therefore, include a 32-pin connector
that is compatible with the iPod™. Other input/output and
control devices can also be used.

Memory interface 502 can be coupled to memory 550.
Memory 550 can include high-speed random access memory
and/or non-volatile memory, such as one or more magnetic
disk storage devices, one or more optical storage devices,
and/or flash memory (e.g., NAND, NOR). Memory 550 can
store operating system 552, such as Darwin, RTXC, LINUX,
UNIX, OSX, WINDOWS, or an embedded operating system
such as VxWorks. Operating system 552 may include instruc-
tions for handling basic system services and for performing
hardware dependent tasks. In some implementations, operat-
ing system 552 can be a kernel (e.g., UNIX kernel). Memory
interface 502 may also be coupled with non-volatile memory
575, which may be, for example, flash memory.

20

30

35

40

45

50

55

6

Memory 550 may also store communication instructions
554 to facilitate communicating with one or more additional
devices, one or more computers and/or one or more servers.
Memory 550 may include graphical user interface instruc-
tions 556 to facilitate graphic user interface processing; sen-
sor processing instructions 558 to facilitate sensor-related
processing and functions; phone instructions 560 to facilitate
phone-related processes and functions; electronic messaging
instructions 562 to facilitate electronic-messaging related
processes and functions; web browsing instructions 564 to
facilitate web browsing-related processes and functions;
media processing instructions 566 to facilitate media process-
ing-related processes and functions; GPS/Navigation instruc-
tions 568 to facilitate GPS and navigation-related processes
and instructions; camera instructions 570 to facilitate camera-
related processes and functions; and/or other software
instructions 572 to facilitate other processes and functions
(e.g., access control management functions).

Memory 550 may also store other software instructions
(not shown), such as web video instructions to facilitate web
video-related processes and functions and/or web shopping
instructions to facilitate web shopping-related processes and
functions. In some implementations, media processing
instructions 566 may be divided into audio processing
instructions and video processing instructions, for example to
facilitate audio processing-related processes and functions
and video processing-related processes and functions,
respectively. Activation record and International Mobile
Equipment Identity (IMEI) 574 or similar hardware identifier
can also be stored in memory 550.

Reference in the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes can be made thereto without departing from the
broader spirit and scope of the invention. The specification
and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense.

What is claimed is:

1. A method for migrating data between a volatile memory
and a non-volatile memory, the method comprising:

receiving a first request to migrate the data from the volatile

memory to the non-volatile memory, wherein:

the data corresponds to a first process having a first
priority, and

the first request is received when a second process hav-
ing a second priority greater than the first priority
requires additional memory;

in response to receiving the first request:

when a portion of the data corresponding to the first

process can be designated for eviction from the vola-

tile memory:

designating the portion of the data for eviction from
the volatile memory, freezing the first process,

in a first memory space of the volatile memory, deter-
mining a first set of memory locations that corre-
spond to the portion of the data that is designated
for eviction,

for each memory location of the first set of memory
locations, storing, to an auxiliary memory that is
separate and distinct from each of the volatile

US 9,195,581 B2

7

memory and the non-volatile memory, a pointer
that refers to the memory location,
for each pointer stored in the auxiliary memory, copy-
ing the portion of the data in the volatile memory
referenced by the pointer to the non-volatile
memory using one or more selected memory loca-
tions that are within a second memory space of the
non-volatile memory, wherein the second process
is allowed access to the portion of the data in the
one or more selected memory locations associated
with the non-volatile memory after the portion of
the data is evicted from the volatile memory, and
storing, in the auxiliary memory, information about
the one or more selected memory locations;
receiving a second request to migrate the portion of the data
from the non-volatile memory to the volatile memory,
wherein the second request is triggered based on a reac-
tivation of the first process that was previously frozen in
response to receiving the first request; and

in response to receiving the second request:

copying, based on the information about the one or more
selected memory locations stored in the auxiliary
memory, the portion of the data from the non-volatile
memory to the volatile memory.

2. The method of claim 1, wherein the portion of the data
cannot be designated for eviction from the volatile memory
when the portion of the data is shared by the first process and
a different process.

3. The method of claim 1, further comprising:

reclaiming the first set of memory locations corresponding

to the first process; and

allocating the reclaimed first set of memory locations to the

second process.

4. The method of claim 1, wherein the auxiliary memory is
organized into a page of memory.

5. The method of claim 1, wherein the auxiliary memory is
accessible via an operating system kernel address space.

6. The method of claim 1, wherein copying the portion of
the data to the non-volatile memory is carried out in a single
write operation.

7. The method of claim 1, wherein copying the portion of
the data from the non-volatile memory to the volatile memory
comprises:

identifying a second set of memory locations in the volatile

memory to which the portion of the data can be written;
and

copying the portion of the data from the non-volatile

memory to the identified second set of memory locations
in the volatile memory.

8. The method of claim 7, wherein the identified second set
of memory locations is the same as the first set of memory
locations to which the pointers stored in the auxiliary memory
refer.

9. The method of claim 7, wherein copying the portion of
the data from the non-volatile memory to the volatile memory
comprises reading the portion of the data from the non-vola-
tile memory in a single read operation.

10. The method of claim 1, wherein freezing the first pro-
cess further comprises:

freezing the first set of memory locations to prevent the first

process from changing the portion of the data associated
with the first set of memory locations.

11. A non-transitory computer-readable medium storing
instructions that, when executed by a processor included in a
computing device, cause the computing device to carry out
steps that include:

10

15

20

25

30

35

40

45

50

55

60

65

8

receiving a first request to migrate data from a volatile

memory to a non-volatile memory,

wherein:

the data corresponds to a first process having a first
priority, and

the first request is received when a second process hav-
ing a second priority greater than the first priority
requires additional memory;

in response to receiving the first request:

when a portion of the data corresponding to the first
process can be designated for eviction from the vola-
tile memory:
designating the portion of the data for eviction from
the volatile memory, freezing the first process,
in a first memory space of the volatile memory, deter-
mining a first set of memory locations that corre-
spond to the portion of the data that is designated
for eviction from the volatile memory,
for each memory location of the first set of memory
locations, copying, to an auxiliary memory that is
separate and distinct from each of the volatile
memory and the non-volatile memory, the portion
of the data that is stored with respect to the memory
location,
copying the portion of the data in the auxiliary
memory to the non-volatile memory using one or
more selected memory locations that are within a
second memory space of the non-volatile memory,
wherein the second process is allowed access to the
portion of the data in the one or more selected
memory locations associated with the non-volatile
memory after the portion of the data is evicted from
the volatile memory, and
storing, in the auxiliary memory, information about
the one or more selected memory locations;
receiving a second request to migrate the portion of the data
from the non-volatile memory to the volatile memory,
wherein the second request is triggered based on a reac-
tivation of the first process that was previously frozen in
response to receiving the first request; and

in response to receiving the second request:

copying, based on the information about the one or more
selected memory locations stored in the auxiliary
memory, the portion of the data from the non-volatile
memory to the volatile memory.

12. The non-transitory computer-readable medium of
claim 11, wherein the portion of the data cannot be designated
for eviction from the volatile memory when the portion of the
data is shared by the first process and different process.

13. The non-transitory computer-readable medium of
claim 11, wherein the steps further include:

reclaiming the first set of memory locations corresponding

to the first process; and

allocating the reclaimed first set of memory locations to the

second process.

14. The non-transitory computer-readable medium of
claim 11, wherein the portion of the data is stored contigu-
ously in the auxiliary memory.

15. The non-transitory computer-readable medium of
claim 11, wherein the auxiliary memory is accessible via an
operating system kernel address space.

16. The non-transitory computer-readable medium of
claim 11, wherein the volatile memory is implemented using
system random access memory (RAM), and the non-volatile
memory is implemented using flash memory.

US 9,195,581 B2

9

17. The non-transitory computer-readable medium of
claim 11, wherein copying the portion of the data to the
non-volatile memory is carried out in a single write operation.

18. The non-transitory computer-readable medium of
claim 11, wherein the steps further include:

identifying a second set of memory locations in the volatile

memory to which the portion of the data can be written;
and

copying the portion of the data from the non-volatile

memory to the identified second set of memory locations
in the volatile memory.

19. The non-transitory computer-readable medium of
claim 18, wherein the identified second set of memory loca-
tions is the same as the first set of memory locations.

20. The non-transitory computer-readable medium of
claim 11, wherein the portion of the data is copied from the
non-volatile memory to the volatile memory by reading the
portion of the data from the non-volatile memory in a single
read operation.

21. A system, comprising:

a volatile memory;

a non-volatile memory;

an auxiliary memory; and

a processor configured to cause the system to:

receive a first request to migrate data from the volatile

memory to the non-volatile memory, wherein:

the data corresponds to a first process having a first
priority, and

the first request is received when a second process
having a second priority greater than the first pri-
ority requires additional memory;

in response to receiving the first request:

when a portion of the data corresponding to the first
process can be designated for eviction from the
volatile memory:

designate the portion of the data for eviction from the
volatile memory, freeze the first process,

in a first memory space of the volatile memory, deter-
mine a first set of memory locations that corre-
spond to the portion of the data that is designated
for eviction from the volatile memory,

for each memory location of the first set of memory
locations, store, to the auxiliary memory, a pointer
that refers to the memory location,

for each pointer stored in the auxiliary memory, copy
the portion of the data in the volatile memory ref-
erenced by the pointer to the non-volatile memory
using one or more selected memory locations that
are within a second memory space of the non-

5

10

15

20

25

30

35

40

45

10

volatile memory, wherein the second process is
allowed access to the portion of the data in the one
or more selected memory locations associated with
the non-volatile memory after the portion of the
data is evicted from the volatile memory, and
store, in the auxiliary memory, information about the
one or more selected memory locations;
receive a second request to migrate the portion of the
data from the non-volatile memory to the volatile
memory, wherein the second request is triggered
based on a reactivation of the first process that was
previously frozen in response to receiving the first
request; and
in response to receiving the second request:
copy, based on the information about the one or more
selected memory locations stored in the auxiliary
memory, the portion of the data from the non-vola-
tile memory to the volatile memory.

22. The system of claim 21, wherein the processor is fur-
ther configured to cause the system to:

reclaim the first set of memory locations corresponding to

the first process; and

allocate the reclaimed first set of memory locations to the

second process.

23. The system of claim 21, wherein the processor is fur-
ther configured to cause the system to:

identify a second set of memory locations in the volatile

memory to which the portion of the data can be written;
and

copy the portion of the data from the non-volatile memory

to the identified second set of memory locations in the
volatile memory.

24. The system of claim 23, wherein the identified second
set of memory locations is the same as the first set of memory
locations to which the pointers stored in the auxiliary memory
refer.

25. The system of claim 21, wherein the processor is con-
figured to cause the system to copy the portion of the data
from the non-volatile memory to the volatile memory by
reading the portion of the data from the non-volatile memory
in a single read operation.

26. The system of claim 21, wherein the portion of the data
cannot be designated for eviction from the volatile memory
when the portion of the data is shared by the first process and
a different process.

27. The system of claim 21, wherein copying the portion of
the data to the non-volatile memory is carried out in a single
write operation.

